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Flow induced surface switching in a bistable nematic device
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Abstract. A surprising feature of liquid crystals is that rapid changes in alignment in these anisotropic liquids
can induce significant flow, termed backflow, which in turn influences the alignment. A recent paper has suggested
that such backflow may be the mechanism behind the fast switching observed in certain bistable nematic cells on
the application of electric fields. In these experiments a weakly chiral nematic with unequal monostable surface
anchorings is switched rapidly between a uniform and aπ-twist configuration, and it is conjectured that the
backflow induced initially at the more strongly anchored surface plays a crucial role in the switching process. In
this paper continuum theory is employed for nematic liquid crystals to investigate this phenomenon, and confirms
that backflow can play an important role in the switching.
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1. Introduction

It has been known from very early this century that flow can influence the alignment of
a nematic liquid crystal, and indeed flow was frequently used to align nematics in cells.
However, the realisation that changes in alignment can induce flow came more recently,
this emanating from research into liquid-crystal display devices in the 1970s. Gerritsma, van
Doorn and van Zanten [1] observed a non-monotonic decrease in light transmitted through a
nematic cell following the removal of the applied voltage, which they termed optical bounce.
This they correctly attributed to an induced flow effect, van Doorn [2, 3] and Berreman [4] con-
firming their explanations by appropriate numerical integrations of the continuum equations
for nematic liquid crystals.

Such induced flow, or backflow as it is commonly called, was initially regarded as some-
thing that one should seek to minimise in order to avoid undue complications in display
devices, but apart from a few studies this phenomenon has not received the attention it merits.
However, in the last few years there has been a renewal of interest in the development of
fast-switching nematic displays, largely through the exploitation of different surface effects
(see for example [5, 6]), and in a recent paper Dozov, Nobili and Durand [7] describe ex-
periments in which they employ electric fields to switch rapidly a bistable nematic cell with
weak, unequal monostable surface anchorings. A key element in their switching mechanism
they attribute to backflow induced initially at the plate with the stronger anchoring, and this
has subsequently been confirmed by an appropriate theoretical study [8]. In this paper we
pursue our investigation of this topic, and present further numerical solutions of the relevant
continuum equations that support our preliminary results.

The following section gives an outline of the necessary continuum equations proposed
by Ericksen [9] and Leslie [10] for nematic liquid crystals. There follows an illustration of
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backflow in a rather simple context that allows a relatively straightforward analysis of the
effect, this very similar to one given earlier by Clark and Leslie [11]. Thereafter we turn to the
main topic of our paper and obtain further solutions relevant to the experiment by Dozov and
co-workers.

Full accounts of properties of nematic liquid crystals are available in the books by Prost
and de Gennes [12] and Chandrasekhar [13, Chapter 3], but a compact introduction to the
continuum theory for these anisotropic liquids can be found in a recent article by Leslie [14].

2. Continuum theory

In many situations a nematic liquid crystal can be regarded as an incompressible, transversely
isotropic liquid, and thus in addition to the velocity vectorv one requires simply a unit vector
field, or director,n to describe the orientation of the local axis of anisotropy, the two variables
subject to the constraints

vi,i = 0, nini = 1. (1)

Here it is convenient to employ Cartesian tensor notation, so that a comma preceding a suffix
denotes partial differentiation with respect to the corresponding spatial coordinate, and the
summation convention applies.

The continuum theory proposed for these anisotropic liquids by Ericksen [9] and Leslie [10]
adopts these constraints and essentially employs the balance laws for linear and angular mo-
mentum, the latter expanded to include explicit body and surface moments (see, for example,
Leslie [15]). For present purposes these equations are most conveniently expressed in terms
of three scalar functions, an elastic stored energyW , a dissipation functionD, and, should
an electric or magnetic field be present, an associated electric or magnetic energyU . In this
event, the balance of linear momentum takes the form [16]

ρv̇i =
(
∂D

∂vi,j

)
,j

− ∂D

∂ṅk
nk,i − p,i, (2)

whereρ denotes density,p an undetermined pressure, and the superposed dot the material
time derivative, while the balance of angular momentum is given by(

∂W

∂ni,j

)
,j

− ∂W
∂ni
− ∂D
∂ṅi
+ ∂U
∂ni
= γ ni, (3)

in whichγ is an arbitrary scalar. The elastic energyW is the Frank–Oseen energy [17, 18]

2W = K1(nk,k)
2+K2(nkekpqnq,p)

2+K3nk,pnpnk,qnq

+(K2+K4)(nk,pnp,k − (nk,k)2), (4)

theK ’s constant coefficients. The dissipation functionD can be expressed as [15, 19]

2D = α1(nkDkpnp)
2+ α4DkpDkp + (α5+ α6)DkpnpDkqnq

+(α3− α2)NkNk + 2(α3+ α2)NkDkpnp, (5)
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theα’s constant coefficients, and

2Dij = vi,j + vj,i , 2Wij = vi,j − vj,i , Ni = ṅi −Wipnp. (6)

The above expression assumes the Parodi relation [20] between the viscous coefficients,
namely

α2+ α3 = α6− α5. (7)

Finally the electric energyU is the familiar

2U = DkEk = ε0EkEk + εa(Eknk)2, (8)

whereE andD are the electric field and displacement, respectively, andε0 andεa are dielectric
permittivities. An analogous expression is valid for a magnetic field.

In the following sections we consider solutions of the above equations in which the director
n, velocityv and electric fieldE take the forms referred to Cartesian axes

nx = sinθ(z, t), ny = 0, nz = cosθ(z, t),

vx = u(z, t), vy = vz = 0, (9)

Ex = Ey = 0, Ez = E.
Thus, with a prime and a superposed dot denoting partial derivatives with respect toz andt ,
respectively,

W = W(θ, θ
′
), D = 1(u′, θ, θ̇ ), U = X(θ, E), (10)

and as discussed by Ericksen [16] the Equations (2) and (3) may be recast as

ρu̇ =
(
∂1

∂u
′

)′
,

(
∂W

∂θ
′

)′
− ∂W
∂θ
− ∂1
∂θ̇
+ ∂X
∂θ
= 0, (11)

along with an expression for the pressure. Also a rather straightforward calculation yields

2W = f (θ)(θ ′)2, f (θ) = K1 sin2 θ +K3 cos2 θ, (12)

2X = ε(θ)E2, ε(θ) = ε0+ εa cos2 θ, (13)

21 = g(θ)(u′)2+ γ1(θ̇)
2+ 2m(θ)u

′
θ̇ , γ1 = α3− α2,

2g(θ) = α4+ (α5− α2) cos2 θ + (α3+ α6+ 2α1 cos2 θ) sin2 θ, (14)

m(θ) = α2 cos2 θ − α3 sin2 θ.

Given the elastic energy and the dissipation function must both be positive definite, it follows
that one must have

f (θ) > 0, g(θ) > 0, γ1 > 0, γ1g(θ)−m2(θ) > 0. (15)
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Finally, combining Equations (11)–(14), one obtains

ρu̇ =
(
g(θ)u

′ +m(θ)θ̇
)′
, (16)

and

2f (θ)θ
′′ + df (θ)

dθ
(θ
′
)2− 2γ1θ̇ − 2m(θ)u

′ − 2εaE
2 sinθ cosθ = 0, (17)

which we return to below.

3. Orientational relaxation at a single boundary

Before turning to the more complex response of a nematic in a thin cell between two parallel
plates with unequal anchoring strengths, we believe it may be helpful to look first at the
rather simpler situation of a nematic strongly anchored at a single boundary, this assuming
a large gap between the plates so that one can essentially ignore any interaction between
effects emanating from them. For a nematic with positive dielectric anisotropy, application
of a sufficiently strong electric field normal to the boundary aligns the anisotropic axis more
or less perpendicular to the plate, except for a thin layer adjacent to the boundary in which
the alignment adjusts rapidly to the orientation dictated by the surface. With an appropriate
choice of Cartesian axes such that the z-axis is normal to the plates, the equations governing
the response of the nematic can be Equations (16) and (17), this restricting the choice of
surface alignment to some degree. From these it is soon apparent that one must include flow
in any transient behaviour in order to avoid an overdeterminancy of the problem. Following the
application of the field, we observe that the induced flow decays after an interval of time and
the alignment attains its equilibrium configuration, given by the static solution of equation
(17). Here, however, we consider the somewhat simpler problem of the relaxation of this
alignment when the field is subsequently removed, this being more relevant for the following
section.

Choosing the moment at which the field is removed as the zero of time and the origin of
coordinates on the plate, the initial conditions for our problem are therefore

θ(z,0) = θe(z), u(z,0) = 0, z > 0, (18)

whereθe(z) is solution of

2f (θ)θ
′′ + df (θ)

dθ
(θ
′
)2− 2εaE

2 sinθ cosθ = 0, (19)

subject to

θe(0) = π

2
, θ

′
e(z)→ 0 asz→∞, (20)

this assuming parallel alignment at the surface. One can show that the solutionθe of the above
problem is zero at large distances from the plate, and for sufficiently strong fields remains
close to zero until very near the plate where it rapidly adjusts to the value at the wall. To
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describe the relaxation following the removal of the field one must solve the coupled partial
differential equations (16) and (17) withE zero, subject to the boundary conditions

θ(0, t) = π

2
, u(0, t) = 0, t > 0, (21a)

θ(z, t)→ 0, u(z, t)→ 0, asz→∞, t > 0, (21b)

the latter appropriate at least for finite time.
Given the difficulties inherent in solving the above nonlinear problem, Clark and Leslie [11]

idealise the above by replacing the initial conditions (18) by

θ(z,0) = 0, u(z,0) = 0, z > 0, (22)

and the Equations (16) and (17) by the linear system

ρu̇ = ηcu′′ + α2θ̇
′
, γ1θ̇ = K3θ

′′ − α2u
′
, 2ηc = α4+ α5− α2, (23)

these the equations obtained from Equations (16) and (17) by replacing the variable coeffi-
cients by their values whenθ is zero, but retain the boundary conditions (21a) and (21b). The
solution of this new problem one assumes must be a good approximation to the solution of the
original problem at least for the initial response.

This new problem rather invites a solution in terms of a similarity variable and therefore
we choose

θ = F(s), u =
(
k

t

)1/2

G(s), s = z

2(kt)1/2
, k = K3

γ1
, (24)

the Equations (23) quickly yielding

F
′′ + 2sF

′ = 2α2

γ1
G
′
, (25a)

G
′′ + 2ε(sG

′ +G) = α2

ηc
(sF

′′ + F ′), ε = ρK3

γ1ηc
, (25b)

the prime now denoting differentiation with respect to the similarity variables. Also the initial
and boundary conditions (22), (21a) and (21b) lead to

F(0) = π

2
, G(0) = 0, F (s)→ 0, sG(s)→ 0, ass →∞. (26)

Integration of the first of the Equations (25b) gives

G
′ + 2εsG = α2

ηc
sF

′
, (27)

the constant of integration zero on account of the conditions (26) for larges. Hence, eliminat-
ing F from equation (25a), we have

sG
′′ + [2(α + ε)s2− 1

]
G
′ + 4εs3G = 0, α = 1− α2

2

γ1ηc
, (28)
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where the parameterα lies between zero and unity in view of the conditions (15). The above
equation has solutions exp(−λs2) provided that the constantλ satisfies

λ2− (α + ε)λ+ ε = 0, (29)

and hence one finds that

G(s) = Aexp(−λ1s
2)+ B exp(−λ2s

2), (30a)

2λ1 = (α + ε)+
[
(α + ε)2− 4ε

]1/2
, 2λ2 = (α + ε)−

[
(α + ε)2− 4ε

]1/2
, (30b)

A andB arbitrary constants. By appeal to Equation (27) the solution subject to conditions (26)
is

F(s) = π

2

[
(λ1− ε)erfc(λ1/2

1 s)−
(
λ1
λ2

)1/2
(λ2− ε)erfc(λ1/2

2 s)

]
[
(λ1− ε)−

(
λ1
λ2

)1/2
(λ2− ε)

] , (31a)

G(s) = α2(πλ1)
1/2
(
exp(−λ1s

2)− exp(−λ2s
2)
)

2ηc

[
(λ1− ε)−

(
λ1
λ2

)1/2
(λ2− ε)

] , (31b)

giving the general solution to the reduced problem. Clearly, the induced flow is large initially,
but soon decays.

For most nematics, the parameterε is very small, largely because the coefficients of the
energy function (4) are small compared with the viscous coefficients. As a consequence it is
more than reasonable to assume that

ε � α, (32)

and in this event to first order inε, the roots of Equation (29) are

λ1 = α, λ2 = ε

α
. (33)

If we employ this approximation, our solution (31a) and (31b) yields

θ = π

2
erfc(α1/2s), u = α2

2ηc

(
πk

αt

)1/2(
exp(−αs2)− exp

(
−εs

2

α

))
, (34)

from which one can more readily identify properties of the solution. In particular, it is clear
that the flow is in the direction of the positivex-axis, sinceα2 is negative. In physical terms
the flow is in the direction in which the director is falling.

To close this section we note one further point, namely that neglect of the fluid inertia has
minimal effect upon the above solution. In this event, if one setsρ equal to zero in Equations
(23), the above analysis becomes somewhat simpler to yield in the same manner

θ = π

2
erfc(α1/2s), u = α2

2ηc

(
πk

αt

)1/2 (
exp(−αs2)− 1

)
, (35)
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Figure 1. Uniform (U ) and twisted (T ) configurations.

which is simply the solution obtained by settingε equal to zero in the above. The difference
between the solutions (34) and (35) lies in the initial flow, not surprisingly, since it is no longer
possible to satisfy the initial condition upon the flow when the inertial term is discarded.

4. Numerical study of reduced problem

For the device proposed by Dozovet al.[7] the two bistable textures considered are essentially
a planar uniform one and aπ -twisted one (see Figure 1). We may switch these two states by
applying an electric field of appropriate strength across the cell, exploiting the fact that the
anchoring strength at each surface is different. Thus, when the device is in its twisted state,
an electric field of sufficient strength is applied perpendicular to the plates. The anchoring at
the plate with weaker anchoring is then insufficient to maintain the twist and, when the field
is removed, the cell relaxes back to the uniform state. Although this is not a simple process to
model, the basis for the process is reasonably well understood.

The switch from uniform to twisted states is less obvious. Application of a sufficiently
strong electric field across the cell in its uniform state induces a nearly perpendicular orient-
ation of the director. When the field is removed, Dozovet al. [7] suggest that some form of
hydrodynamic coupling between the plates occurs which can force the director to relax in
opposite directions at either plate. This would eventually lead to aπ -bend solution. However,
there exists an energy argument which suggests that this structure is unstable and that it
quickly transforms to the requiredπ -twist structure. Modelling this change from uniform
state toπ -bend state may be achieved by employing the differential equations (16) and (17).
In order to proceed further with these equations, we replace the set of six viscosity coefficients
α1− α6 in the equations (14)–(17) by one constant, employing the simplifications

α1 = α3 = α6 = 0, α4 = α5 = −α2 = α, (36)

and measuring this constantα, by setting it equal to the rotational viscosityγ1. This reduction
in the number of terms is justified if we consider the relative values of these coefficients for
most nematics (see [21] and the references contained therein). This simplification reduces two
of the expressions in (14) to

2g(θ) = α(1+ 2 cos2 θ) and m(θ) = −α cos2 θ, (37)
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therefore reducing the complexity of differential equations (16) and (17).
The boundary and initial conditions for the flow are quite simple. One employs the usual

no-slip condition for the velocityv and therefore

u = 0 on z = 0, h, (38)

and att = 0 we require the flow to satisfy

u(z) = 0, (39)

since initially the nematic is at rest. The boundary and initial conditions for the director angle
θ are, however, considerably more complex. This is not unexpected, since the process which
switches between uniform and twisted states originates in a region very close to the surface.
With the anchoring at the top surface,z = h, assumed to be strong and fixed at an angleθh
and the anchoring at the bottom surface,z = 0, assumed to be weak the boundary conditions
may be assumed to be as follows

θ(h, t) = θh (40a)

and

−f (θ)∂θ
∂z
− A0 sinθ cosθ + η∂θ

∂t
= 0 at z = 0. (40b)

Equation (40a), for the top boundary condition, is self explanatory, whilst (40b) is obtained
from an adapted form of Jenkins and Barratt’s surface equations [22]. The three terms in Equa-
tion (40b) represent bulk elastic, surface elastic and surface viscosity effects, respectively. The
surface elastic term is obtained by use of the surface-anchoring energy per unit area

ws = 1
2A0 cos2 θ, (41)

where the anchoring strength at the bottom plateA0 may be written as

A0 = K3

l0
, (42)

wherel0 is the surface extrapolation length. The constantη is called the surface viscosity and
has the dimensions of viscosity× length.

An initial condition for the director may be given by

θ(z) = θ0+ z

h
(θh − θ0) for z ∈ [0, h] (43)

whereθ0 is the initial value of the director angle atz = 0. Although the director is unlikely to
vary uniformly across the cell for an equilibrium solution – unless the solution is truly uniform
– this seems not an unreasonable starting point.

Unfortunately, given the nonlinear nature of the differential equations which one is required
to solve, it is not possible to provide useful exact analytic solutions. For this reason numerical
methods are employed to deliver solutions to the differential equations (16) and (17) with the
boundary and initial conditions (38)–(40b) and (43). These methods are based on the ‘method
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of lines’ (see for example [23]) and convert the system of partial differential equations into a
system of ordinary differential equations which proves simpler to solve.

Before proceeding with our numerical calculations it is necessary that we introduce values
for the various parameters given in the equations. In this paper all values are given in cgs units
and the material parameters used here are for the nematic liquid crystal 5CB at 32◦C. ([24],
[25]). However, other sets of material parameters have also been considered in the course of
this investigation. The viscosity and elastic coefficients employed here are therefore

K1 = 4× 10−7, K2 = 2× 10−7, K3 = 4·85× 10−7 and α = 0·45. (44)

Furthermore, the cell width used is 1µm, the value chosen for the surface viscosity is

η = α × 10−6, (45)

and, for reasons discussed in Section 3, we neglect the inertial term in the differential Equation
(16). A numerical illustration of the acceptability of this final point is given in the following
section. All other parameters will be defined for each separate example.

5. Study of solutions with the backflow effect

In this section we produce results which show that the suggested means of switching from
uniform to twisted states by Dozovet al. [7] is correct. That is, the relaxation of the director
at either plate from the near vertical – once the field has been switched off – is shown to be
coupled and that it leads to aπ -bend solution, which by an energy argument must become a
π -twist solution.

In the first figure of this section representations of the director angleθ and flow component
u are given at values across the cell and for increasing timet for the field switched on. These
three-dimensional graphs give director and flow values at the spatial points

z = 0, 0·1h, 0·2h, 0·3h, . . . ,0·9h, h, (46)

for every 100 time-steps, as provided by the numerical routine. It is easy to see that across most
of the cell the director angle approaches zero very quickly, differing only at the boundaries.
At the z = 0 plate the weak anchoring necessitates the director lagging slightly behind that at
the centre of the cell, whilst at the strongly anchored plate,z = h, it remains fixed at the angle
θh. For the field switched on the flow is not particularly interesting, being almost symmetric
across the cell and settling down to near zero as the director becomes normal to the plates.

Figure 3 showsθ andu values across the cell for increasing time after the electric field has
been removed. From the first of these it is possible to see that the director does indeed tend
towards aπ -bend state between the plates, with the director angle near the strongly anchored
top plate tending very quickly towardsθh and that at the bottom plate moving in a slightly
slower fashion towards−π/2. For the field off case the flow proves most instructive. Once
the electric field has been removed the relaxation of the director near the strongly anchored
top plate induces a flow at this plate which diffuses across the cell appearing with smaller
magnitude at thez = 0 plate at a later time. It is this induced flow at the lower plate which
affects the relaxation of the director there. Acting independently of any flow considerations
the director at the weakly anchored surface would relax towards its originalπ/2 state. How-
ever, with the backflow the director is dragged past the vertical so that the angleθ becomes
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Figure 2. θh = 0·48π,A0 = 0·1, electric field on.

Figure 3. θh = 0·48π,A0 = 0·1, electric field off.

negative. Once this has happened any successive surface relaxation at the bottom plate sends
the orientation towards−π/2.

When comparing the switching times of different solutions, we think it is useful to simply
plot values for the director at three different points within the cell. Figure 4 shows such graphs
for the example illustrated in Figures 2 and 3. The continuous line shows the director angle at
z = 0 against time. The dotted and starred lines similarly show the director atz = 0·5h and
z = 0·99h, respectively.
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Figure 4. θh = 0·48π,A0 = 0·1, electric field on then off.

In order to compare solutions for different sets of parameters when the field has been
removed, it is important that at that point the solutions are as close to each other as possible.
Since the flow, and the director within the cell, tend towards zero at the end of the field on
stage, and the angleθh is fixed at the top plate, the best way of ensuring closeness of solutions
is requiring the angleθ at z = 0 to be the same for each compared solution when the field is
switched off.

Figure 5 provides an illustration of how little difference inclusion of the inertial term in
Equation (16) makes to the solution. The main reason that this simplification of the problem is
desirable is that the numerical routine can require the taking of about 3000 times the number
of numerical time-steps to solve the problem with the inertial term included in Equation (16)
than without it. In this example the time scale begins at the point where the field is removed.

Figure 5. θh = 0·48π,A0 = 0·05.Comparison of solutions whereρ = 0 or ρ ≈ 1 in differential equation (16).
The first graph shows full solutions at threeθ values. The second shows a detail of theθ solution atz = 0.

As increasing the switching speed of the proposed device would be advantageous, a fairly
obvious step to take is to observe how changes in the anchoring strengthA0 at the weakly
anchored surface change the solution. This is illustrated in Figure 6 where the value of the
director angle at thez = 0 plate, once the field is removed, is given for different values ofA0.
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Values ofθ at the centre of the cell and at the top of the cell are very similar for the different
A0 values, and are therefore omitted from the figure. AsA0 increases the rate of change ofθ
at z = 0 increases in magnitude for the period of time where the switching speed is greatest.
However, it can also be seen that the solution with the strongest weak anchoring shown in
Figure 6 begins the switching process significantly later than the other three given solutions.
The reason for this slowness of reaction is that it takes longer for the induced backflow to
overcome the attempted relaxation ofθ(0) towardsπ/2. Analogous to this result there is a
strength of anchoring at the lower plate beyond which the solution will not switch to aπ -bend
solution. This is illustrated in Figure 7 where values of the director atz = 0,0·5h and 0·99h
are given for different strengths of anchoring. ForA0 = 0·13 the solution does tend towards
aπ -bend solution. However, with the anchoring strength increased toA0 = 0·14 the director
at the lower plate relaxes back towards its originalπ/2 state before the backflow has a chance
to effect it. Ast →∞ this solution tends towardsπ/2 across the whole cell, except near the
z = h plate where the fixed director angleθh must be satisfied.

Figure 6. θh = 0·48π.Values ofθ at z = 0 given for increasingA0 values.

Figure 7. θh = 0·48π.ForA0 = 0·13, the solution switches. ForA0 = 0·14 the solution does not switch.
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For the final figure in this paper we consider what consequence using strong anchoring at
the top plate, and not weak anchoring similar to Equation (40b) for thez = 0 plate, has on the
problem. In Figure 8 three solutions are shown with weak anchoring employed at both plates
in comparison with one solution where the usual strong anchoring at the top plate (40a) is
used. The weak anchoring boundary condition for the top plate is given by

f (θ)
∂θ

∂z
− Ah sinθ cosθ + η∂θ

∂t
= 0 at z = h, (47)

where the anchoring strengthAh is assumed to be greater thanA0. In this exampleA0 is
fixed at the value 0·1 andAh is varied. One can see that, not surprisingly, the strong, infinite
anchoring provides a limit for the wholly weakly anchored problem.

Figure 8. θh = 0·48π,A0 = 0·1. Comparison between different types of anchoring at the top surface.

6. Concluding remarks

The calculations described in this paper clearly demonstrate that the occurrence of backflow
can lead to a rotation throughπ of the alignment in a planar nematic cell with a suitably
small gapwidth and appropriate relative surface anchoring strengths. Since the splay and bend
constantsK1 andK3 are both larger than the twist constantK2, this bend-splay deformation
has a higher energy than a twist rotation throughπ , and therefore the nematic will ultimately
relax to the lower energy state, presumably assisted by the chirality of the doped nematic.
Given that the theory employed is well established, the above calculations do provide rather
strong support for the mechanism put forward by Dozov, Nobili and Durand [7], although not
providing details of the latter stage of the switching process.

It is naturally desirable to continue these calculations to describe the full switching process,
but, since this entails a discussion of three-dimensional solutions for a chiral nematic, the
increase in computational complexity presents a significant challenge. Equally, one would like
to model the reverse switching from theπ -twist to the uniform state, although the mechanism
for this appears to be relatively straightforward [7]. These objectives having been achieved,
there remains the problem of determining values of the material parameters that optimise the
switching process.
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